1778E - The Tree Has Fallen - CodeForces Solution


bitmasks dfs and similar math trees

Please click on ads to support us..

C++ Code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<double> vd;
typedef vector<vi> vvi;
typedef vector<vll> vvll;
typedef vector<pii> vpii;
typedef vector<pll> vpll;
typedef vector<pdd> vpdd;
typedef vector<vd> vvd;
#define yn(ans) printf("%s\n", (ans)?"Yes":"No");
#define YN(ans) printf("%s\n", (ans)?"YES":"NO");
template<class T> bool chmax(T &a, T b) {
	if (a >= b) return false;
	a = b; return true;
}
template<class T> bool chmin(T &a, T b) {
	if (a <= b) return false;
	a = b; return true;
}
#define FOR(i, s, e, t) for ((i) = (s); (i) < (e); (i) += (t)) 
#define REP(i, e) for (int i = 0; i < (e); ++i) 
#define REP1(i, s, e) for (int i = (s); i < (e); ++i)
#define RREP(i, e) for (int i = (e); i >= 0; --i)
#define RREP1(i, e, s) for (int i = (e); i >= (s); --i)
#define all(v) v.begin(), v.end()
#define pb push_back
#define qb pop_back
#define pf push_front
#define qf pop_front
#define maxe max_element
#define mine min_element
ll inf = 1e18;
#define DEBUG printf("%d\n", __LINE__); fflush(stdout);
template<class T> void print(vector<T> &v, bool withSize = false) {
	if (withSize) cout << v.size() << endl;
	REP(i, v.size()) cout << v[i] << " "; 
	cout << "\n";
}
mt19937_64 rng((unsigned int) chrono::steady_clock::now().time_since_epoch().count());

int __FAST_IO__ = []() {
	std::ios::sync_with_stdio(0);
	std::cin.tie(0);
	std::cout.tie(0);
	return 0;
}();

vector<vector<int>> readGraph(int N, int M, bool isDirected = false) {
	vector<vector<int>> g(N);
    REP(i, M) {
    	int u, v;
	    cin >> u >> v;
    	--u, --v;
    	g[u].push_back(v);
    	if (!isDirected) g[v].push_back(u);
    }
    return g;
}

class LCA {
public:
    LCA(vector<vector<int>> &_g): N(_g.size()), depth(N, 0), sz(N, 1), g(_g), dp(N, vi(20, -1)) {
        dfs(0, -1);
    }
    
    void dfs(int cur, int par) {
        if (par != -1) {
    	    depth[cur] = depth[par] + 1;
    	    dp[cur][0] = par;
    	    int x = par;
    	    REP1(i, 1, 20) {
    	        dp[cur][i] = dp[x][i - 1];
    	        x = dp[x][i - 1];
    	        if (x == -1) break;
    	    }
    	}
    	for (auto son: g[cur]) {
    	    if (son == par) continue;
    	    dfs(son, cur);
	    sz[cur] += sz[son];
    	}
    }
    
    int lca(int u, int v) {
        if (depth[u] < depth[v]) swap(u, v);
    	int diff = depth[u] - depth[v];
        REP(i, 20) {
            if (diff >> i & 1) u = dp[u][i];
        }
        while (u != v) {
            if (dp[u][0] == dp[v][0]) return dp[u][0];
            REP1(i, 1, 20) {
                if (dp[u][i] == dp[v][i]) {
                    u = dp[u][i - 1];
                    v = dp[v][i - 1];
                    break;
                }
            }
        }
        return u;
    }
    
    int dis(int u, int v) {
    	int par = lca(u, v);
    	return depth[u] + depth[v] - 2 * depth[par];
    }

    int dep(int u) {return depth[u];}
    int size(int u) {return sz[u];}

    int parent(int u, int d) {
        REP(i, 20) {
            if (d >> i & 1) u = dp[u][i];
        }
        return u;
    }

    bool isParent(int u, int v) {
        if (dep(u) > dep(v)) return false;
        int d = dis(u, v);
        return dep(v) >= d && parent(v, d) == u;
    }

    bool inPath(int s, int t, int k) {
    	int p = lca(s, t);
    	return (isParent(p, k) && (isParent(k, s) || isParent(k, t)));
    }


    int N;
    vi depth, sz;
    vvi g, dp; 
};

int main() {
    int t;
    cin >> t;
    while (t--) {
    	int N, Q;
    	cin >> N;
    	vi v(N);
    	REP(i, N) cin >> v[i];
    	
    	auto g = readGraph(N, N - 1);
    	LCA lca(g);
    	
    	vvi base(N, vi(30, 0)), base2(N, vi(30, 0));
    	vector<vvi> left(N), right(N);
    	vi id(N);
    	auto merge = [&](vi &b, int e) {
    		RREP(i, 29) {
    			if (!(e >> i & 1)) continue;
    			if (!b[i]) {
    				b[i] = e;
    				return;
    			}
    			e ^= b[i];
    		}
    	};
    	
    	auto merge2 = [&](vi &from, vi &to) {
    		RREP(i, 29) if (to[i] != 0) merge(from, to[i]);	
    	};
    	
    	function<void(int, int)> dfs = [&](int cur, int par) {
    		merge(base[cur], v[cur]);
    		if (par != -1) g[cur].erase(find(all(g[cur]), par));
    		for (auto next: g[cur]) {
    			dfs(next, cur);
    			merge2(base[cur], base[next]);
    		}
    		
    	};
    	dfs(0, -1);

    	vi p(30, 0);
    	function<void(int, int, vi &)> dfs2 = [&](int cur, int par, vi &p) {
    		base2[cur] = p;
    		left[cur].resize(g[cur].size() + 1, vi(30, 0));
    		right[cur].resize(g[cur].size() + 1, vi(30, 0));
    		REP(i, g[cur].size()) {
    			id[g[cur][i]] = i;
    			left[cur][i + 1] = left[cur][i];
    			merge2(left[cur][i + 1], base[g[cur][i]]);
    			int j = g[cur].size() - 1 - i;
    			right[cur][j] = right[cur][j + 1];
    			merge2(right[cur][j], base[g[cur][j]]);
    		}
			
    		REP(i, g[cur].size()) {
    			int next = g[cur][i];
    			auto q = p;
    			merge(q, v[cur]);
    			merge2(q, left[cur][i]);
    			merge2(q, right[cur][i + 1]);
    			dfs2(next, cur, q);
    		}
    	};
    	dfs2(0, -1, p);

		cin >> Q;
    	REP(i, Q) {
    		int R, U;
    		cin >> R >> U;
    		--R, --U;
    		vi p;
    		if (R == U) {
    			p = base[0];
    		} else if (lca.lca(R, U) == U) {
    			int V = lca.parent(R, lca.dep(R) - lca.dep(U) - 1);
    			p = base2[U];
    			merge(p, v[U]);
    			int j = id[V];
    			merge2(p, left[U][j]);
    			merge2(p, right[U][j + 1]);
    		} else {
    			p = base[U];
    		}
    		
    		int ans = 0;
			RREP(i, 29) {
				if (p[i] != 0 && !(ans >> i & 1)) ans ^= p[i];
			}
			printf("%d\n", ans);
    	}
    }
    
    return 0;
}


Comments

Submit
0 Comments
More Questions

344. Reverse String
1047. Remove All Adjacent Duplicates In String
977. Squares of a Sorted Array
852. Peak Index in a Mountain Array
461. Hamming Distance
1748. Sum of Unique Elements
897. Increasing Order Search Tree
905. Sort Array By Parity
1351. Count Negative Numbers in a Sorted Matrix
617. Merge Two Binary Trees
1450. Number of Students Doing Homework at a Given Time
700. Search in a Binary Search Tree
590. N-ary Tree Postorder Traversal
589. N-ary Tree Preorder Traversal
1299. Replace Elements with Greatest Element on Right Side
1768. Merge Strings Alternately
561. Array Partition I
1374. Generate a String With Characters That Have Odd Counts
1822. Sign of the Product of an Array
1464. Maximum Product of Two Elements in an Array
1323. Maximum 69 Number
832. Flipping an Image
1295. Find Numbers with Even Number of Digits
1704. Determine if String Halves Are Alike
1732. Find the Highest Altitude
709. To Lower Case
1688. Count of Matches in Tournament
1684. Count the Number of Consistent Strings
1588. Sum of All Odd Length Subarrays
1662. Check If Two String Arrays are Equivalent